Thermochemistry of Adducts of Arsenic Trihalides with Saturated Heterocyclic Bases

P. Oliver Dunstan*

Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, Cep 13083-970, Campinas, São Paulo, Brazil

The adducts AsX_3 ·nL (where L is piperazine (Pipz), morpholine (Morph), or piperidine (Pipd); X is Cl, Br, or I; and *n* is 1, ${}^{3}/_{2}$, or 2) have been synthesized and characterized by melting points, elemental analysis, thermal studies, and infrared spectroscopy. By means of calorimetric measurements in solution, the mean standard enthalpies of the arsenic–nitrogen bonds were determined as well as the values of other thermochemical parameters of the adducts.

Introduction

In a previous article (Dunstan and Airoldi, 1988), we have described the synthesis, characterization, and thermochemistry of arsenic trihalide complexes with heterocyclic amines, in which the mean arsenic-nitrogen coordinated bond energies were determined. Few adducts of arsenic trihalides with saturated heterocyclic amines are reported in the literature (Montignie, 1935). No information about the enthalpy of the arsenic-nitrogen bond in these adducts is available.

In this work adducts of arsenic trihalides with piperazine, morpholine, and piperidine were synthezied and characterized. The thermochemical study of these adducts is made with the purpose of obtaining the enthalpies involved in the formation of the adducts. The coordination ability of the saturated heterocyclic bases was also investigated.

Experimental Section

All preparations and manipulations were carried out in polyethylene glovebags under a nitrogen atmosphere.

Chemicals. Arsenic trihalides were prepared as described in a previous paper (Dunstan and Airoldi, 1988). Piperazine (99% Aldrich Chemical Co., Inc.) was purified by recrystallization from methanol. Morphine (ACS., Aldrich Chemical Co., Inc.) and piperidine (RPE, Analyticals, Carlo Erba) were purified by distillation.

Solvents used in the synthesis of adducts were purified by distillation and stored over Linde 4A molecular sieves. Ethanolamine (99% (p/v), Casa Americana de Artigos para Laboratórios Ltda.) was used without purification for preparing the calorimetric solvent.

Analytical Section. Carbon, hydrogen, and nitrogen contents were determined by microanalytical procedures. Halogen analysis was obtained by gravimetry using a standard 0.1 mol L^{-1} AgNO₃ solution, after the adducts were dissolved in water (Kolthoff, 1956). Arsenic content was determined by redox titration of the aqueous solution of adduct samples, with standard 0.025 mol L^{-1} iodine solution, to the appearance of the blue color of starch used as an indicator (Kolthoff, 1956).

Adduct Synthesis. The adducts were prepared by the reaction of arsenic trihalides and the ligands in solution. A typical procedure is given below.

AsCl₃: 2Morph. To a solution of 2.00 mL of AsCl₃ (23.9 mmol) in 20 mL of ethanol was added 1.45 mL of morpholine (23.9 mmol) in 20 mL of ethanol slowly and dropwise with stirring. The stirring was maintained for at least 3 h. After filtration, the white crystals formed were washed with three portions of 20 mL of petroleum ether, and dried for several hours in vacuo. The compound obtained was stored in a desiccator over calcium chloride. All the adducts are prepared with a molar ratio donor/acceptor of 1/1. In all cases petroleum ether was used for dissolving arsenic tribromide. Carbon disulfide was used for dissolved arsenic triiodide.

Infrared Spectra. These were obtained with samples in a KBr matrix for adducts and piperazine and a film of ligand sandwiched between KBr plates for piperidine and morpholine. A Perkin-Elmer 1600 series FTIR spectrophotometer was used in the region (4000 to 400) cm⁻¹.

Thermal Studies. These were made in an argon atmosphere in a DuPont 951 TG analyzer and DuPont 910 DSC equipment, with samples varying in mass from 12 mg to 19 mg (TG) and from 10 mg to 13 mg (DSC) and a heating rate of 10 K min⁻¹.

Calorimetric Measurements. All the solution calorimetric determinations were carried out in an LKB 8700-1 precision calorimeter as described before (Dunstan, 1992).

The solution calorimetry measurements were performed by dissolving samples of (5 to 100) mg of adduct or AsX_3 in 100 mL of calorimetric solvent and the ligand in the AsX_3 solution, maintaining a molar relation equal to the stoichiometry of the adduct.

Results and Discussion

All the complexes prepared were solids. The yields range from 18% to 89%. The yields, melting points, colors, appearance, and analytical data are summarized in Table 1.

Infrared Data. The more important IR bands are reported in Table 2. The pattern of the infrared spectra of the adducts is similar to that of the free ligands, although dislocation and splitting of some bands is observed. Considerable shifts to lower frequencies of the $\nu_{\rm N-H}$ of coordinated ligands with respect to the uncoordinated ligands are observed. This shows that the ligands are coordinated to the arsenic atom by means of the nitrogen atom of their N–H group (Ahuja, 1969; Ahuja and Garg, 1971; Pellacani et al., 1973; Soriego and Costamagna, 1971). In morpholine adducts the positive shift of the C–O–C stretching vibration, that is found at 1097 cm⁻¹ in the free ligand, excludes

^{*} Telph. 0055(019) 239711. Fax: 0055 (019)2393805.

Table 1. Melting Points, Yields, Appearance, and Analytical Data of the Adducts

				%	С	%	Н	%	Ν	% ha	logen	%	As
compd	yield (%)	MP/K	appearance ^a	calcd	found								
AsCl ₃ ·Pipz	52	581-583	wh cr							39.77	40.12	28.02	28.16
AsCl ₃ ·2Morph	18	468	wh cr							29.92	29.86	20.67	20.94
AsCl ₃ ·2Pipd	20	515 - 517	wh cr							30.25	29.94	21.31	21.10
AsBr ₃ ·Pipz	48	587 ^b	pa ye pw	11.99	12.38	2.51	2.78	6.99	7.37	59.81	60.10	18.69	18.34
AsBr ₃ ·Morph	51	395 - 397	pa ye pw	11.95	11.85	2.26	2.36	3.49	3.33	59.67	59.97	18.65	19.03
AsBr ₃ •Pipd	60	446 - 448	whpw	15.02	16.28	2.77	2.66	3.50	3.61	59.96	60.20	18.74	18.57
AsI ₃ · ³ / ₂ Pipz	54	495 - 497	pa or pw	12.32	12.52	2.59	2.68	7.18	6.98	65.10	65.41	12.81	13.05
AsI ₃ ·2Morph	89	463 - 465	ye pw	15.26	15.36	2.88	2.90	4.45	4.34	60.44	60.08	11.89	11.75
AsI ₃ •Pipd [−]	46	403 - 405	or pw	11.11	10.95	2.05	2.03	2.59	2.43				

^a Key: wh, white; pa, pale; ye, yellow; or, orange; cr, crystals; pw, powder. ^b Key: not melting at 587 K.

Table 2. More Important IR Bands (cm⁻¹)

compd	$\gamma_{\rm N-H}$	γc–o–c	$\delta_{\mathrm{H-N-C}}$
Pipz	3328 (m) ^a		861 (m), 815 (s)
AsCl ₃ ·Pipz	3241 (m)		932 (s), 869 (m)
AsBr ₃ ·Pipz	3246 (m)		865 (m), 844 (w)
AsI ₃ • ³ / ₂ Pipz	3264 (s)		863 (m), 802 (w)
Morph	3320 (m)	1097 (s)	889 (m), 835 (s)
AsCl ₃ ·2Morph	3282 (m)	1104 (s)	899 (vs), 871 (vs), 824 (w)
AsBr ₃ ·Morph	3078 (sh)	1102 (s)	883 (w), 868 (m)
AsI ₃ ·2Morph	3092 (s)	1108 (s)	868 (s)
Pipd	3276 (m)		860 (s), 824 (m)
AsCl ₃ ·2Pipd	3196 (m)		874 (w), 862 (m)
AsBr ₃ ·Pipd	3144 (s)		861 (m), 800 (m)
AsI₃•Pipđ	3133 (m)		880 (w), 844 (w)

^{*a*} In CCI₄. Intensity of bands: vs, very strong; s, strong; m, medium; w, weak; sh, shoulder

the possibility of oxygen-to-arsenic coordination (Ahuja and Garg, 1971). In the H-N-C deformation region a great

Table 3. Thermoanalytical Data of the Compounds

change is observed that affords evidence of the coordination of the N atom of the ligands (Soriego and Costamagna, 1971; Greenwood and Wade, 1960; Birnbaum, 1969).

Thermal Studies. The thermogravimetry (TG-DTG) of the adducts shows the loss of ligands and trihalides in several steps. The adducts of piperazine lose part of the trihalide (or nearly all the ligand in the case of AsI_3 · $3/_2Pipz$) in the first step of loss of mass. They lose the rest of the trihalide (or all the trihalide in the case of AsI_3 · $3/_2Pipz$) and all or part of the piperazine in the second step. Only in the case of $AsCI_3$ ·Pipz is a third step observed with the loss of $AsCI_3$ and piperazine together but with a mass relation different from that of the second step. The capillary melting points of the adducts showed their decompositon on melting. They are unstable in the liquid phase. The DSC curves of the piperazine adducts, that are consistent with the TG data, showed several peaks. An exothermic peak is observed at 563 K. As it is inside a

mass lost/%		lost/%				
compd	calcd	obs	temp range/K	species lost	DSC peak T/K	enthalpy/kJ mol ⁻¹
AsCl ₃ ·Pipz	5.42	5.30	336 - 358	-0.08 AsCl ₃	388	53.60
- 1	35.69	36.20	433 - 573	-0.29 (AsCl ₃ · 2Pipz)	563	-12.01
	58.85	58.05	573 - 621	-0.64 (AsCl ₃ · 0.75 Pipz)	588	-30.70
					608	-6.24
					638	-31.57
AsCl ₃ ·2Morph	24.51	32.00	423-523	-Morph	448	91.90
•	75.49	67.22	523 - 550	–AsCl̂₃• Morph	481	-107.37
				•	535	-43.38
AsCl ₃ ·2Pipd	24.22	24.00	438 - 527	-Pipd	521	2.61
-	75.78	75.84	527 - 576	-AsCl ₃ ·Pipd	532	-30.42
				•	539	-7.62
					553	-3.81
AsBr ₃ ·Pipz	3.93	3.69	345 - 387	-0.05 AsBr ₃	412	40.72
•	96.07	93.39	523 - 660	−0.95 AsBr ₃ · Pipz	522	13.07
		2.90 ^a		•	605	-35.06
					633	-22.62
AsBr ₃ •Morph	19.51	19.47	350 - 389	-0.9 Morph	388	28.95
•	47.60	47.46	389 - 549	–0.58 AsBr₃• 0.1 Morph	553	-2.99
	32.89	32.29	549 - 589	-0.42 AsBr ₃	563	-33.96
AsBr ₃ ·Pipd	10.65	10.88	347 - 376	-0.5 Pipd	368	17.72
•	45.01	44.52	392 - 525	–0.45 (ÂsBr₃• Pipd)	430	23.63
	43.29	44.08	527 - 611	-0.05 (AsBr ₃ · Pipd)	559	-35.24
				· · · ·	586	-13.21
AsI ₃ · ³ / ₂ Pipz	22.09	21.40	448 - 541	$-3/_2$ Pipz	329	15.49
•	77.91	74.76	541 - 800	-AsI ₃	595	10.33
		4.17 ^a			628	125.57
AsI ₃ ·2Morph	17.29	17.60	431 - 511	-1.25 Morph	458	122.70
	82.71	76.44	511 - 580	–AsI₃• 0.75 Morph	587	148.71
		5.96 ^a		- •		
AsI ₃ ·Pipd	18.10	16.80	433 - 510	-0.14 (AsI ₃ · 2.86 Pipd)	409	26.43
- 1	72.45	72.86	510 - 638	-0.86 AsI ₃	488	14.62
	5.51	5.50	650 - 688	-0.35 Pipd	533	-4.97
	3.94	3.80	719-758	-0.25 Pipd	575	-72.47
				*	633	-13.70
					729	-11.20

<i>m</i> /mg	$n imes 10^6$ /mol	$Q_{ m r}/{ m J}$	<i>m</i> /mg	$n imes 10^6$ /mol	$Q_{ m r}/{ m J}$	<i>m</i> /mg	$n imes 10^6$ /mol	$Q_{\rm r}/{ m J}$	<i>m</i> /mg	$n imes 10^{6}$ /mol	$Q_{ m r}/{ m J}$
	AsCl ₃ (l) + 10% $\overline{\text{EA}-\text{H}_2\text{O}^a}$						AsBr₃∙M	orph(s) +	10% EA-	-Methanol	
18.06	99.62	-27.08	32.31	178.23	-45.50	18.41	45.82	-8.10	78.65	195.76	-34.95
109.97	606.63	-162.08	27.69	152.75	-36.02	29.68	73.87	-12.84	54.38	135.35	-24.50
38.17	210.56	-54.97	41.52	229.04	-57.79	41.78	104.01	-17.88			
57.27	315.92	-83.21	29.74	164.06	-37.86		$\Delta_3 H^{\circ}/2$	kJ mol ⁻¹ =	= -177.82	2 ± 1.50	
40.28	222.20	-55.71	29.50	162.73	-40.56						
23.37	128.92	-32.26	31.41	173.27	-41.59		Pipd(l) -	$+ AsBr_3 - 1$	10% EA-	Methanol	
32.31	189.93	-47.36				20.40	239.58	-2.65	33.00	387.55	-4.51
	$\Delta_1 H^{\circ}/k$	$J \text{ mol}^{-1} =$	-259.21	\pm 2.98		26.93	316.26	-3.58	19.38	227.60	-2.35
						36.83	432.53	-5.08			
	Pipz(s	$s) + AsCl_3 -$	-10% EA-	$-H_2O$			$\Delta_2 H^{\circ}$	/kJ mol ⁻¹ :	= -11.43	± 0.21	
8.58	99.61	-0.35	27.21	315.89	-1.19						
13.47	156.38	-0.70	32.12	372.89	-1.37		AsBr₃•F	Pipd(s) + 1	0% EA-1	Methanol	
	$\Delta_2 H^{\circ}$	/kJ mol ⁻¹ =	= $-3.77 \pm$	0.13		8.77	21.94	-3.12	15.07	37.69	-4.79
						8.10	20.26	-2.42	12.55	31.39	-4.10
	AsCl	$\cdot \operatorname{Pipz}(s) +$	10% EA-	$-H_2O$		14.44	36.12	-4.77			
7.10	26.55	-0.23	7.55	28.23	-0.26		$\Delta_3 H^{\circ}/2$	kJ mol ⁻¹ =	= -130.17	7 ± 2.72	
15.82	59.16	-0.65	13.75	51.42	-0.53						
24.10	90.12	-1.05					AsI ₃	s(s) + 10%	EA-Met	hanol	
	$\Delta_3 H^{\circ}/2$	kJ mol ⁻¹ =	-11.07 ±	= 0.41		54.41	119.42	-57.76	83.89	184.12	-35.71
						113.75	249.65	-50.43	46.55	102.17	-23.29
	2Morpł	n(l) + AsCl	₃ –10% EA	$A-H_2O$		38.84	85.24	-20.06	42.01	92.20	-21.15
25.62	294.07	-6.71	22.46	257.80	-6.65	77.21	169.46	-33.78	80.87	177.49	-39.24
33.09	379.25	-10.06	11.38	130.62	-2.54	91.53	200.88	-41.77	102.55	225.07	-49.13
29.18	334.93	-7.47				102.97	225.99	-54.21	144.02	316.09	-67.95
	$\Delta_2 H^{\circ}/2$	kJ mol ⁻¹ =	-48.49 ±	= 2.09		113.82	249.81	-49.34			
							$\Delta_1 H^{\circ}/2$	kJ mol ⁻¹ =	= -212.42	2 ± 3.66	
	AsCl ₃ ·2	2Morph(s)	+ 10% EA	$-H_2O$							
9.68	27.23	-0.21	15.97	44.92	-0.33		³ / ₂ Pipz(s	$+ AsI_3 -$	10% EA-	Methanol	
10.62	29.87	-0.23	30.87	86.83	-0.61	18.34	212.94	1.46	12.22	141.87	0.89
16.26	45.74	-0.35	27.82	78.25	-0.54	9.72	112.84	0.76	31.21	362.33	2.62
	$\Delta_3 H^{\circ}$	kJ mol ⁻¹ =	$= -7.17 \pm$	0.15		19.73	229.05	1.46			
							$\Delta_2 H^{\circ}$	kJ mol ⁻¹	= +10.36	± 0.47	
	2Pipd	$(I) + AsCl_3$	-10% EA	$-H_2O$							
63.06	740.57	-17.66	36.66	430.53	-10.45		$Asl_3 \cdot 3/2$	Pipz(s) + 1	10% EA-	Methanol	
35.93	421.96	-9.38	42.20	495.60	-11.77	13.91	23.78	-1.11	14.83	25.36	-1.10
38.10	447.45	-10.72	39.50	346.53	-7.69	22.77	38.93	-1.90	12.04	20.59	-0.85
	$\Delta_2 H^{\circ}/2$	$kJ mol^{-1} =$	-47.14 ±	= 0.62		24.33	41.60	-1.99	40.04	1.00	
							$\Delta_3 H^{*}$	kJ mol ⁻¹	= -48.24	± 1.38	
00.17	ASCI3	\cdot 2Pipd(s) +	- 10% EA	$-H_2O$	1 1 00			1) A T			
23.17	65.90	+1.34	24.22	68.89	+1.39	50.07	2Morph($1) + AsI_3 - AsI_3 -$	10% EA-	-Methanol	0.00
23.39	66.53	+1.34	21.56	61.32	+1.23	52.97	607.99	-4.69	39.65	455.11	-3.22
5.63	16.01	+0.34	46.25	131.55	+2.70	8.04	92.33	-1.45	21.76	249.81	-3.93
	$\Delta_3 H^2/2$	$kJ mol^{-1} =$	= -20.34 ±	= 0.08		24.69	283.39	-4.34	15.05	0.07	
	A «D»	(-) + 100/1	EA Math	amala			$\Delta_2 H^2$	KJ MOI	= -15.25	± 0.27	
50.62	ASDI'3	(S) + 10%		216 90	90 1 6		Act .9M	omb(c)	100/ EA	Mathanal	
59.05	109.31	-40.10	99.09	310.00	-80.10	00.01	ASI3*2.WI	r pn(s) + r pn(s)	10% EA-		0.00
28.99	187.48	-51.47	117.94	3/3.83	-99.85	38.81	01.01	-5.28	20.03	31.80	-2.30
26.39	83.87	-20.60	44.17	140.38	-35.46	4.35	6.90	-0.29	23.80	37.78	-3.19
29.05	92.33	-21.84	/3.30	232.96	-60.60	9.50	15.08	-1.10 /l-1-mal-1-	_ 00.00	0.07	
94.00	300.04 A.LP/L	-79.57	-261.01	210.00 ⊥ 2.62	-39.52		$\Delta_3 \Pi$	KJ IIIOI	02.00	± 2.01	
	$\Delta_1 \Pi / K$	J 1101	-201.91	± 2.03			Dind(l)	$\perp \Lambda cL - 1$	0% EA_N	Inthanal	
	$\operatorname{Dip}_{\mathbf{Z}}(\mathbf{c}) \dashv$	$-\Lambda_c \mathbf{Pr} = 1$	0% ₽ ∧_N	lothanol		8 70	109 17	+ AS13 - 1	070 EA-N 20 50	940 75	-9.69
10 09	210 CO	$-ASDI_3 - IO$	15 90	177 51	1 00	6.70	102.17	-0.98	20.30	240.75	-2.02
10.00	210.00	+ 2.11	10.29	177.31	± 1.90	0.10	12.23	-0.73	24.00	291.95	-3.59
11.07	133.33 A . H ^p /	+1.07	19.40 · 19.99 4	- 0.48	± 2.70	15.11	177.49 A.H.	-2.21 /k I mol ⁻¹	11 68	+ 0.44	
			1 16.66]	_ 0.10				NJ 1101	11.00	± U.11	
	AsBr ₂ P	ipz(s) + 10	% EA-M	ethanol			AsIa Pi	ind(s) + 10)% EA-N	fethanol	
19.93	49.73	-0.15	27.70	69.11	-0.33	4.01	7.42	-1.00	34.61	64.00	-9.53
36.00	89.82	-0.48	57 81	144 24	-0.96	13 67	25 28	-3.75	52.66	97 38	-15.60
00.00	λ <i>Η</i> Υ	$kJ mol^{-1} =$	= -5.86 +	0.62	5.00	25.78	47.67	-7 78	15 63	28.90	-4 06
	<u> </u>		5.00 L			20.70	Λ ₂ Η ⁰ /	kJ mol ⁻¹ =	= -156.46	3 ± 2.93	1.00
	Morph(1)	+ AsBr ₂ -1	10% EA-M	Methanol					100.10		
24.35	279.49	-2.10	26.68	306.24	-2.21						
25.78	295.91	-2.10	30.02	344.57	-2.55						
	$\Delta_2 H^{\circ}$	/kJ mol ⁻¹ =	= $-7.39 \pm$	0.06							

Table 4. Enthalpies of Dissolution at 298.15 K

^a Calorimetric solvent: 100 mL of 10% (v/v) of ethanolamine (EA) in water or 100 mL of 10% (v/v) of ethanolamine in methanol.

region of mass loss of the adduct $AsCl_3 \cdot Pipz$, it is attributed to decompositon and elimination of part of $AsCl_3$ and part of piperazine. The other endothermic peaks observed are due to elimination of part of the trihalide or part of the trihalide together with part of the ligand. In the case of $AsI_3 \cdot 3/_2$ Pipz, a residue is observed, probably carbon (Dunstan, 1994a,b), as the product of the redox degradation of the ligand. The DSC curve of this adduct shows an endothermic peak at 595 K consistent with this behavior. The endothermic peak at 329 K is attributed to elimination of nearly all the ligand. The endothermic peak at 628 K is due to elimination of the AsI₃, as it is near the temperature of vaporization of AsI₃. The adducts of morpholine lose mass in two or three steps. The first step

Journal of Chemical and Engineering Data, Vol. 41, No. 6, 1996 1453

Table 5.	Summary	of the	Thermochemical	Results	(kJ mol ⁻¹)
					· · ·	

	•						
compd	$\Delta_{\mathbf{r}}H^{\circ}$	$\Delta_{\mathrm{f}}H^{\mathrm{o}}$	$\Delta^9_s H^\circ$ or $\Delta^g_l H^\circ$	$\Delta_{\mathrm{m}}H^{\mathrm{o}}$	$\Delta_{\mathrm{D}} H^{\mathrm{o}}$	$\Delta_{\rm r} H^{\circ}({\rm g})$	$\bar{D}_{\mathrm{As-N}}$
AsCl ₃ (l)		-305.0^{a}	43.5 ^a				
AsBr ₃ (s)		-197.5^{a}	67.5 ^a				
AsI ₃ (s)		-58.2^{a}	95.0^{b}				
Piperazine(s)		$-45.6\pm1.6^{\circ}$	84.2^{d}				
Morpholine(l)		-170.2^{d}	42.3 ^c				
Piperidine(l)		-88.0 ± 1.0^{c}	39.1 ± 1.8^{c}				
AsCl ₃ ·Pipz(s)	-251.91 ± 3.01	-602.5 ± 3.6		-397.6 ± 3.3	336.1 ± 3.2	-295.4 ± 3.5	147.7 ± 1.8
AsCl ₃ ·2Morph(s)	-300.53 ± 3.64	-945.9 ± 4.3		-428.6 ± 4.3	385.1 ± 4.2	-386.3 ± 4.4	193.2 ± 2.2
AsCl ₃ ·2Pipd(s)	-326.69 ± 3.04	-807.7 ± 3.8		-448.4 ± 3.7	404.9 ± 5.9	-409.3 ± 6.0	204.6 ± 3.0
AsBr ₃ ·Pipz(s)	-243.83 ± 2.74	-486.9 ± 3.3		-295.5 ± 3.1	328.0 ± 2.9	-311.3 ± 3.2	155.7 ± 1.6
AsBr ₃ ·Morph(s)	-91.48 ± 3.03	-459.2 ± 3.3		-201.3 ± 3.3	133.8 ± 3.2	-159.0 ± 3.5	159.0 ± 3.5
AsBr ₃ ·Pipd(s)	-143.17 ± 3.79	-428.7 ± 4.0		-249.8 ± 4.3	182.3 ± 4.2	-210.7 ± 4.7	210.7 ± 4.7
$AsI_3 \cdot 3/2Pipz(s)$	-153.82 ± 3.94	-280.4 ± 4.7		-375.1 ± 4.3	280.1 ± 4.2	-290.9 ± 4.4	97.0 ± 1.5
AsI ₃ ·2Morph(s)	-144.81 ± 4.66	-543.4 ± 5.2		-324.4 ± 5.2	229.4 ± 5.1	-282.1 ± 5.3	141.1 ± 2.7
AsI ₃ ·Pipd(s)	-67.64 ± 4.71	-213.8 ± 4.9		-201.7 ± 5.1	106.7 ± 5.0	-162.6 ± 5.4	162.6 ± 2.7
-							

^a Wagman et al. 1982. ^b Karapet'Yants and Karapet'Yants, 1970. ^c Pedley and Rylance, 1970. ^d See text.

with elimination of all or part of the ligand. The second step with elimination of the trihalide or part of it and the rest of the ligand. Only in the case of AsBr₃·Morph was a third step observed with elimination of the rest of AsBr₃. Only in the case of AsI₃·2Morph was a residue, probably carbon, observed (Dunstan, 1995). The DSC curves of the morpholine adducts that are consistent with the TG data showed several peaks. Endothermic peaks at (448, 388, and 458) K are due to the melting and decomposition of the adducts. Other exothermic peaks are due to decomposion and elimination of part of the trihalide together with part of the ligand or part of AsBr₃. The redox degradation of morpholine leaves a residue of carbon only in the case of AsI₃·2Morph (Dunstan, 1996). The adducts of piperidine lose mass in two, three, or four steps. In the first step they lose the ligand or part of it. Only in the case of AsI₃·Pipd are part of AsI₃ and part of piperidine lost together. In the second step the trihalide or part of it and part of the ligand are eliminated. Only in the case of AsI3 · Pipd is the rest of AsI₃ eliminated. In the third step part of AsBr₃ and part of piperidine together are eliminated as well as part of piperidine for the other adduct. The fourth step eliminates the rest of piperidine. The DSC curves of the piperidine adducts that are consistent with the TG data show several peaks. Endothermic peaks at (521, 430, and 409) K are due to melting and decomposition of the adducts. Endothermic peaks due to decompositon and elimination of part of trihalide and part of ligand together are also observed. Exothermic peaks due to the redox degradation of the ligand are also observed (Dunstan, 1994a,b, 1995, 1996). Table 3 presents the thermoanalytical data of the adducts.

Calorimetric Measurements. The standard enthalpies of dissolution of arsenic trihalides, ligands, and complexes $(\Delta_t H^{\circ})$ were obtained as previously reported (Dunstan and Airoldi, 1988). Table 4 gives these standard thermochemical values, Uncertainty intervals given in this table are twice the standard deviations of about five replicate measurements on each compound. Combined errors were calculated from the square root on the sum of the square of the component errors. From the standard enthalpies of dissolution, the standard enthalpies of the acid/base reactions ($\Delta_{\rm r} H^{\circ}$), the standard enthalpies of formation ($\Delta_{\rm f} H^{\circ}$), the standard enthalpies of decomposition ($\Delta_{\rm D} H^{\circ}$), the lattice standard enthalpies ($\Delta_M H^\circ$), and the standard enthalpies of the Lewis acid/base reactions in the gaseous phase $(\Delta_r H^{\circ}(g))$ can be obtained by using the appropriate thermochemical cycles (Dunstan and Airoldi, 1988; Dunstan and dos Santos, 1989). The $\Delta_r H^{\circ}(g)$ values can be used to calculated the standard enthalpies of the As-N bonds (Dunstan and dos Santos, 1989). Table 5 lists the values

obtained for all these thermochemical parameters for the adducts. For the determination of $\Delta_r H^{\circ}(g)$ it was necessary to assume that the molar standard enthalpy of sublimation of each adduct was equal to the enthalpy of sublimation of 1 mol of ligand (Dunstan and Airoldi, 1988; Dunstan and dos Santos, 1989; Dunstan, 1994a,b; Chagas and Airoldi, 1989), as melting points and thermal studies showed that the adducts decompose on heating and were not found in the liquid phase and probably not in the gaseous phase. From the \overline{D}_{As-N} values for a series of adducts with the same stoichiometry and the same trihalide and not considering that Pipz is a bidentate ligand, the basicity order Pipd > Morph > Pipz can be obtained. Considering that Pipz is a bidentate ligand and comparing with adducts of stoichiometry 1/2, the same order is obtained. The expected order would be Pipd > Morph due to an inductive effect of substitution of one carbon atom in the ring of the Pipd by the more electronegative oxygen atom. Pipz substitutes one carbon atom in the ring by one nitrogen atom that is more electronegative than the carbon atom but less electronegative than an oxygen atom. It would be expected to be a better acid than Morph but the substitution leaves the Pipz as a bidentate ligand and competition between the two nitrogen atoms causes it to be a worse base than Morph. Considering adducts with the same stoichiometry and the same ligand, from $\bar{D}_{\mathrm{As-N}}$ values, the acidity order is $AsBr_3 > AsCl_3$ (for Pipz), $AsCl_3 > AsI_3$ (for Morph), and $AsBr_3 > AsI_3$ (for Pipd). The expected order from the electronegativety values of halogen atoms would be AsCl₃ > AsBr₃ > AsI₃. The \overline{D}_{As-N} values show that AsBr₃, is a better acid to Pipz than AsCl₃ as the stronger bond is formed with the stronger acid. The inversion in the expected order would be due to the nature of the bond formed between the donor and acceptor atoms (Dunstan and Airoldi, 1988; Srivastava et al., 1976; Ochiai, 1953; Zackrisson, 1961).

In synthesis, the \bar{D}_{As-N} and other thermochemical parameters data indicate that the As–N bond is stronger as we go in the sequence Pipz < Morph < Pipd. The substitution of one carbon atom in the saturated ring of the Pipd by the more electronegative atoms oxygen or nitrogen causes the decrease of the electronic density on the nitrogen atom by an inductive effect. For a given ligand, the stronger bond is formed with the stronger acid, as is also shown by the \bar{D}_{As-N} data and other thermochemical parameters data.

Literature Cited

Ahuja, I. S. Inorg. Chim. Acta. 1969, 3, 110–112.
Ahuja, I. S.; Garg, A. Inorg. Nucl. Chem. Lett. 1973, 7, 937–940.
Birnbaum, E. R. J. Inorg. Nucl. Chem. 1969, 31, 2628–2631.

- Chagas, A. P.; Airoldi, C. Polyhedron 1989, 8, 1093-1097.
- Dunstan, P. O. Thermochim. Acta 1992, 197, 201-210.
- Dunstan, P. O. J. Chem. Eng. Data 1994a, 39, 667-669.
- Dunstan, P. O. Thermochim. Acta 1994b, 240, 91-100.
- Dunstan, P. O. Thermochim. Acta 1995, 268, 83-93.
- Dunstan, P. O. Thermochim. Acta Data 1996, 279, 167-175.
- Dunstan, P. O.; Airoldi, C. J. Chem. Eng. Data 1988, 33, 93-96.
- Dunstan, P. O.; dos Santos, L. C. R. Thermochim. Acta 1989, 156, 163 - 177.
- Greenwood, N. N.; Wade, K. J. Chem. Soc. 1960, 1130-1141.
- Karapet'Yants, M. Kh.; Karapet'Yants, M. L. Thermodynamic Constants of Inorganic and Organic Compounds; Humphrey, Ann Arbor, London, MI, 1970.
- Kolthoff, I. M.; Sandell, E. B. tratado de Química Analítica Cuantitativa; Nigar S. R. L., Buenos Aires, 1956.
- Montignie, E. Bull. Soc. Chim. Fr. 1935, 5, 1365-1367.
- Ochiai, E. J. Org. Chem. 1953, 18, 534-551.

- Pedley, J. B.; Rylance, J. Computer Analyzed Thermochemical Data; Organic and Organo-Metallic Compounds; Sussex N. P. L., Sussex University: Brighton, England, 1970.
 Pellacani, G. C.; Battistuzzi, R.; Marcotrigiano, G. J. Inorg. Nucl. Chem.
- **1973**, *35*, 2243–2247. Soriego, R.; Costamagna, J. A. *J. Inorg. Nucl. Chem.* **1971**, *33*, 1528–1532.
- Srivastava, P. C.; Ansari, B. J.; Banerjee, B. K. Indian J. Pure Appl. Phys. 1976, 14, 384–387.
- Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I., Bailey, S. M.; Churney, K. L.; Nuttail, R. L. J. Phys. Chem. Ref. Data 1982, 11, 2-77.

Zackrisson, M. Acta Chem. Scand. 1961, 15, 1785-1786.

Received for review May 10, 1996. Accepted August 13, 1996.[®]

JE960164O

[®] Abstract published in Advance ACS Abstracts, September 15, 1996.